Integrability and BRST invariance from BF topological theory
Abstract
We consider the Becchi, Rouet, Stora and Tyutin (BRST) invariant effective action of the non-abelian BF topological theory in two dimensions with gauge group Sl(2,R) . By considering different gauge fixing conditions, the zero-curvature field equation gives rise to several well known integrable equations. We prove that each integrable equation together with the associated ghost field evolution equation, obtained from the BF theory, is a BRST invariant system with an infinite sequence of BRST invariant conserved quantities. We construct explicitly the systems and the BRST transformation laws for the Korteweg-de Vries (KdV) sequence (including the KdV, mKdV and CKdV equations) and Harry Dym integrable equation.
Más información
Título según WOS: | Integrability and BRST invariance from BF topological theory |
Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL |
Volumen: | 56 |
Número: | 44 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2023 |
DOI: |
10.1088/1751-8121/acff9b |
Notas: | ISI |