Integrability and BRST invariance from BF topological theory
Abstract
We consider the Becchi, Rouet, Stora and Tyutin (BRST) invariant effective action of the non-abelian BF topological theory in two dimensions with gauge group S l ( 2 , R ) . By considering different gauge fixing conditions, the zero-curvature field equation gives rise to several well known integrable equations. We prove that each integrable equation together with the associated ghost field evolution equation, obtained from the BF theory, is a BRST invariant system with an infinite sequence of BRST invariant conserved quantities. We construct explicitly the systems and the BRST transformation laws for the Korteweg-de Vries (KdV) sequence (including the KdV, mKdV and CKdV equations) and Harry Dym integrable equation. © 2023 IOP Publishing Ltd
Más información
| Título según WOS: | Integrability and BRST invariance from BF topological theory |
| Título según SCOPUS: | Integrability and BRST invariance from BF topological theory |
| Título de la Revista: | Journal of Physics A: Mathematical and Theoretical |
| Volumen: | 56 |
| Número: | 44 |
| Editorial: | Institute of Physics |
| Fecha de publicación: | 2023 |
| Idioma: | English |
| DOI: |
10.1088/1751-8121/acff9b |
| Notas: | ISI, SCOPUS |