Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators
Abstract
We study uniformly elliptic fully nonlinear equations of the type F (D2 u, D u, u, x) = f (x). We show that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects; we obtain existence and uniqueness results for nonproper operators whose principal eigenvalues (in some cases, only one of them) are positive; finally, we obtain an existence result for nonproper Isaac's equations. © 2007 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators |
| Título según SCOPUS: | Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators |
| Título de la Revista: | ADVANCES IN MATHEMATICS |
| Volumen: | 218 |
| Número: | 1 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2008 |
| Página de inicio: | 105 |
| Página final: | 135 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0001870807003283 |
| DOI: |
10.1016/j.aim.2007.12.002 |
| Notas: | ISI, SCOPUS |