An adaptive stabilized finite element method for the Stokes–Darcy coupled problem
Keywords: a posteriori error analysis, stabilized finite element method, a priori error analysis, Coupled Stokes–Darcy equation
Abstract
For the Stokes–Darcy coupled problem, which models a fluid that flows from a free medium into a porous medium, we introduce and analyze an adaptive stabilized finite element method using Lagrange equal order element to approximate the velocity and pressure of the fluid. The interface conditions between the free medium and the porous medium are given by mass conservation, the balance of normal forces, and the Beavers–Joseph–Saffman conditions. We prove the well-posedness of the discrete problem and present a convergence analysis with optimal error estimates in natural norms. Next, we introduce and analyze a residual-based a posteriori error estimator for the stabilized scheme. Finally, we present numerical examples to demonstrate the performance and effectiveness of our scheme.
Más información
Título de la Revista: | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
Volumen: | 443 |
Editorial: | Elsevier |
Fecha de publicación: | 2024 |
Página de inicio: | 115753 |
Página final: | 115753 |
Idioma: | English |
DOI: |
/10.1016/j.cam.2024.115753 |
Notas: | WOS |