Basic properties of nonlinear stochastic Schrodinger equations driven by Brownian motions
Abstract
The paper is devoted to the study of nonlinear stochastic Schrödinger equations driven by standard cylindrical Brownian motions (NSSEs) arising from the unraveling of quantum master equations. Under the Born-Markov approximations, this class of stochastic evolutions equations on Hilbert spaces provides characterizations of both continuous quantum measurement processes and the evolution of quantum systems. First, we deal with the existence and uniqueness of regular solutions to NSSEs. Second, we provide two general criteria for the existence of regular invariant measures for NSSEs. We apply our results to a forced and damped quantum oscillator. © Institute of Mathematical Statistics, 2008.
Más información
Título según WOS: | Basic properties of nonlinear stochastic Schrodinger equations driven by Brownian motions |
Título según SCOPUS: | Basic properties of nonlinear stochastic Schrödinger equations driven by Brownian motions |
Título de la Revista: | ANNALS OF APPLIED PROBABILITY |
Volumen: | 18 |
Número: | 2 |
Editorial: | INST MATHEMATICAL STATISTICS |
Fecha de publicación: | 2008 |
Página de inicio: | 591 |
Página final: | 619 |
Idioma: | English |
URL: | http://projecteuclid.org/euclid.aoap/1206018198 |
DOI: |
10.1214/105051607000000311 |
Notas: | ISI, SCOPUS |