Characterizing the inf-sup condition on product spaces

Gatica, GN; Sayas, FJ

Abstract

In this paper we establish characterization results for the continuous and discrete inf-sup conditions on product spaces. The inf-sup condition for each component of the bilinear form involved and suitable decompositions of the pivot space in terms of the associated null spaces are the key ingredients of our theorems. We illustrate the theory through its application to bilinear forms arising from the variational formulations of several boundary value problems. © 2008 Springer-Verlag.

Más información

Título según WOS: Characterizing the inf-sup condition on product spaces
Título según SCOPUS: Characterizing the inf-sup condition on product spaces
Título de la Revista: NUMERISCHE MATHEMATIK
Volumen: 109
Número: 2
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2008
Página de inicio: 209
Página final: 231
Idioma: English
URL: http://link.springer.com/10.1007/s00211-008-0140-3
DOI:

10.1007/s00211-008-0140-3

Notas: ISI, SCOPUS