Characterizing the inf-sup condition on product spaces
Abstract
In this paper we establish characterization results for the continuous and discrete inf-sup conditions on product spaces. The inf-sup condition for each component of the bilinear form involved and suitable decompositions of the pivot space in terms of the associated null spaces are the key ingredients of our theorems. We illustrate the theory through its application to bilinear forms arising from the variational formulations of several boundary value problems. © 2008 Springer-Verlag.
Más información
Título según WOS: | Characterizing the inf-sup condition on product spaces |
Título según SCOPUS: | Characterizing the inf-sup condition on product spaces |
Título de la Revista: | NUMERISCHE MATHEMATIK |
Volumen: | 109 |
Número: | 2 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2008 |
Página de inicio: | 209 |
Página final: | 231 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00211-008-0140-3 |
DOI: |
10.1007/s00211-008-0140-3 |
Notas: | ISI, SCOPUS |