Efficient View-Based SLAM Using Visual Loop Closures
Abstract
This paper presents a simultaneous localization and mapping algorithm suitable for large-scale visual navigation. The estimation process is based on the viewpoint augmented navigation (VAN) framework using an extended information filter. Cholesky factorization modifications are used to maintain a factor of the VAN information matrix, enabling efficient recovery of state estimates and covariances. The algorithm is demonstrated using data acquired by an autonomous underwater vehicle performing a visual survey of sponge beds. Loop-closure observations produced by a stereo vision system are used to correct the estimated vehicle trajectory produced by dead reckoning sensors.
Más información
Título según WOS: | ID WOS:000260865400008 Not found in local WOS DB |
Título de la Revista: | IEEE TRANSACTIONS ON ROBOTICS |
Volumen: | 24 |
Número: | 5 |
Editorial: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Fecha de publicación: | 2008 |
Página de inicio: | 1002 |
Página final: | 1014 |
DOI: |
10.1109/TRO.2008.2004888 |
Notas: | ISI |