Generalized humbert curves
Abstract
In this note we consider a certain class of closed Riemann surfaces which are a natural generalization of the so called classical Humbert curves. They are given by closed Riemann surfaces S admitting H ≅ ℤ2 k as a group of conformal automorphisms so that S/H is an orbifold of signature (0, k + 1; 2,..., 2). The classical ones are given by k = 4. Mainly, we describe some of its generalities and provide Fuchsian, algebraic and Schottky descriptions. © 2008 The Hebrew University of Jerusalem.
Más información
Título según WOS: | Generalized humbert curves |
Título según SCOPUS: | Generalized Humbert curves |
Título de la Revista: | ISRAEL JOURNAL OF MATHEMATICS |
Volumen: | 164 |
Número: | 1 |
Editorial: | HEBREW UNIV MAGNES PRESS |
Fecha de publicación: | 2008 |
Página de inicio: | 165 |
Página final: | 192 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s11856-008-0025-2 |
DOI: |
10.1007/s11856-008-0025-2 |
Notas: | ISI, SCOPUS |