A unified learning framework for object detection and classification using nested cascades of boosted classifiers

Verschae R.; Ruiz del Solar, J; Correa M.

Abstract

In this paper a unified learning framework for object detection and classification using nested cascades of boosted classifiers is proposed. The most interesting aspect of this framework is the integration of powerful learning capabilities together with effective training procedures, which allows building detection and classification systems with high accuracy, robustness, processing speed, and training speed. The proposed framework allows us to build state of the art face detection, eyes detection, and gender classification systems. The performance of these systems is validated and analyzed using standard face databases (BioID, FERET and CMU-MIT), and a new face database (UCHFACE). © 2007 Springer-Verlag.

Más información

Título según WOS: A unified learning framework for object detection and classification using nested cascades of boosted classifiers
Título según SCOPUS: A unified learning framework for object detection and classification using nested cascades of boosted classifiers
Título de la Revista: MACHINE VISION AND APPLICATIONS
Volumen: 19
Número: 2
Editorial: Springer
Fecha de publicación: 2008
Página de inicio: 85
Página final: 103
Idioma: English
URL: http://link.springer.com/10.1007/s00138-007-0084-0
DOI:

10.1007/s00138-007-0084-0

Notas: ISI, SCOPUS