Hydroclimate variations over the last 17,000 years as estimated by leaf waxes in rodent middens from the south-central Atacama Desert, Chile

Frugone-Alvarez, Matias; Contreras, Sergio; Meseguer-Ruiz, Oliver; Tejos, Eduardo; Delgado-Huertas, Antonio; Valero-Garces, Blas; Diaz, Francisca P.; Briceno, Matias; Bustos-Morales, Manuel; Latorre, Claudio

Abstract

Leaf cuticular waxes are one of the most important environment-plant interaction structural systems that enable desert plants to withstand extreme climatic conditions. We present a long chain n-alkyl lipids study in fresh plant leaves and rodent palaeomiddens collected along an elevational gradient in the south-central Atacama Desert of Chile, covering six different vegetation belts: Steppe (4500-4000 m asl), Puna (4000-3300 m asl), pre-Puna (3300-2400 m asl), Absolute Desert (2400-1000 m asl) and Coastal Desert (1000-0 m asl). The 28 rodent palaeomiddens analyzed from Quebrada Incahuasi (25.6 & DEG;S, 3600 m asl) span the last 17,000 years. Modern-day distribution of long-chain n-alkanes and n-alkanoic acids varies among the dominant plant associations of the Atacama Desert. These plants show a species -specific chemotaxonomy linked to the climatic conditions. Furthermore, differences in average chain length (ACL) and carbon preference index (CPI) suggest that these plant communities are highly adapted to extreme environmental conditions. The sum of leaf wax n-alkanes was highest under wet conditions, while n-alkanoic acids (between n -C24 and n -C28) increased with hyperaridity. Similarly, analysis of n- alkane time series from palaeomiddens showed that the greatest changes in leaf wax n-alkane distri-butions (ACL and CPI) corresponded to the greatest increases in moisture during the Central Andean Pluvial Event (CAPE; between 18 and 9 ka cal BP) and the Late Holocene. The shift in the palaeomidden n- alkane distributions is corroborated by the relative abundance of rainfall-dependent extra-local taxa. This is the first study to report leaf wax content obtained from ancient rodent middens, and shows promising results as a robust hydroclimate proxy for the Atacama Desert region. & COPY; 2023 Published by Elsevier Ltd.

Más información

Título según WOS: ID WOS:001012696600001 Not found in local WOS DB
Título de la Revista: QUATERNARY SCIENCE REVIEWS
Volumen: 311
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2023
DOI:

10.1016/j.quascirev.2023.108084

Notas: ISI