On nilpotency of generalized almost-Jordan right-nilalgebras
Abstract
We study the variety of algebras A over a field of characteristic ≠2, 3, 5 satisfying the identities xy=yx and β ((xx)y)x-((yx)x)x + γ ((xx)x)y-((yx)x)x=0, where β, γ are scalars. We do not assume power-associativity. We prove that if A admits a non-degenerate trace form, then A is a Jordan algebra. We also prove that if A is finite-dimensional and solvable, then it is nilpotent. We find three conditions, any of which implies that a finite-dimensional right-nilalgebra A is nilpotent. © 2008 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University.
Más información
Título según WOS: | On nilpotency of generalized almost-Jordan right-nilalgebras |
Título según SCOPUS: | On nilpotency of generalized almost-jordan right-nilalgebras |
Título de la Revista: | ALGEBRA COLLOQUIUM |
Volumen: | 15 |
Número: | 1 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2008 |
Página de inicio: | 69 |
Página final: | 82 |
Idioma: | English |
Notas: | ISI, SCOPUS |