On nilpotency of generalized almost-Jordan right-nilalgebras

Arenas, M; Labra, A

Abstract

We study the variety of algebras A over a field of characteristic ≠ 2, 3, 5 satisfying the identities xy=yx and β ((xx)y)x-((yx)x)x + γ ((xx)x)y-((yx)x)x=0, where β, γ are scalars. We do not assume power-associativity. We prove that if A admits a non-degenerate trace form, then A is a Jordan algebra. We also prove that if A is finite-dimensional and solvable, then it is nilpotent. We find three conditions, any of which implies that a finite-dimensional right-nilalgebra A is nilpotent. © 2008 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University.

Más información

Título según WOS: On nilpotency of generalized almost-Jordan right-nilalgebras
Título según SCOPUS: On nilpotency of generalized almost-jordan right-nilalgebras
Título de la Revista: ALGEBRA COLLOQUIUM
Volumen: 15
Número: 1
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2008
Página de inicio: 69
Página final: 82
Idioma: English
Notas: ISI, SCOPUS