Invariant conserved currents for gravity

Obukhov, YN; Rubilar, GF

Abstract

We develop a general approach, based on the Lagrange-Noether machinery, to the definition of invariant conserved currents for gravity theories with general coordinate and local Lorentz symmetries. In this framework, every vector field ξ on spacetime generates, in any dimension n, for any Lagrangian of gravitational plus matter fields and for any (minimal or nonminimal) type of interaction, a current J [ξ] with the following properties: (1) the current (n - 1)-form J [ξ] is constructed from the Lagrangian and the generalized field momenta, (2) it is conserved, d J [ξ] = 0, when the field equations are satisfied, (3) J [ξ] = d Π [ξ] "on shell", (4) the current J [ξ], the superpotential Π [ξ], and the charge Q [ξ] = ∫ J [ξ] are invariant under diffeomorphisms and the local Lorentz group. We present a compact derivation of the Noether currents associated with diffeomorphisms and apply the general method to compute the total energy and angular momentum of exact solutions in several physically interesting gravitational models. © 2008 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Invariant conserved currents for gravity
Título según SCOPUS: Invariant conserved currents for gravity
Título de la Revista: PHYSICS LETTERS B
Volumen: 660
Número: 3
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2008
Página de inicio: 240
Página final: 246
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0370269308000233
DOI:

10.1016/j.physletb.2007.12.042

Notas: ISI, SCOPUS