Inverse problems for the Schrodinger equation via Carleman inequalities with degenerate weights

Mercado, A.; Osses A.; Rosier L

Abstract

(Baudouin and Puel 2002 Inverse Problems 18 1537-54), investigated some inverse problems for the evolution Schrödinger equation by means of Carleman inequalities proved under a strict pseudoconvexity condition. We show here that new Carleman inequalities for the Schrödinger equation may be derived under a relaxed pseudoconvexity condition, which allows us to use degenerate weights with a spatial dependence of the type ψ(x) = x e, where e is some fixed direction in . As a result, less restrictive boundary or internal observations are allowed to obtain the stability for the inverse problem consisting in retrieving a stationary potential in the Schrödinger equation from a single boundary or internal measurement. © 2008 IOP Publishing Ltd.

Más información

Título según WOS: Inverse problems for the Schrodinger equation via Carleman inequalities with degenerate weights
Título según SCOPUS: Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights
Título de la Revista: INVERSE PROBLEMS
Volumen: 24
Número: 1
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2008
Idioma: English
URL: http://stacks.iop.org/0266-5611/24/i=1/a=015017?key=crossref.2e5160ff340cc0f02f4ebacb2294e9b9
DOI:

10.1088/0266-5611/24/1/015017

Notas: ISI, SCOPUS