Thick clusters for the radially symmetric nonlinear Schrodinger equation
Abstract
This article is devoted to the study of radially symmetric solutions to the nonlinear Schrödinger equation 2 Δ u - V(r)u + |u| {p-1}u = 0, in B, { u}{ n} = 0, { on},{}B, where B is a ball in {â„} N, 1 < p < (N + 2)/(N - 2), N 3 and the potential V is radially symmetric. We construct positive clustering solutions in an annulus having O(1/) critical points, as well as sign changing solutions with O(1/) zeroes concentrating near zero. © 2007 Springer-Verlag.
Más información
| Título según WOS: | Thick clusters for the radially symmetric nonlinear Schrodinger equation |
| Título según SCOPUS: | Thick clusters for the radially symmetric nonlinear Schrödinger equation |
| Título de la Revista: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS |
| Volumen: | 31 |
| Número: | 2 |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2008 |
| Página de inicio: | 231 |
| Página final: | 261 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00526-007-0112-y |
| DOI: |
10.1007/s00526-007-0112-y |
| Notas: | ISI, SCOPUS |