Hidden nonlinear su(2|2) superunitary symmetry of N=2 superextended 1D Dirac delta potential problem

Correa, F; Nieto, LM; Plyushchay, MS

Abstract

We show that the N = 2 superextended 1D quantum Dirac delta potential problem is characterized by the hidden nonlinear su (2 | 2) superunitary symmetry. The unexpected feature of this simple supersymmetric system is that it admits three different Z2-gradings, which produce a separation of 16 integrals of motion into three different sets of 8 bosonic and 8 fermionic operators. These three different graded sets of integrals generate two different nonlinear, deformed forms of su (2 | 2), in which the Hamiltonian plays a role of a multiplicative central charge. On the ground state, the nonlinear superalgebra is reduced to the two distinct 2D Euclidean analogs of a superextended Poincaré algebra used earlier in the literature for investigation of spontaneous supersymmetry breaking. We indicate that the observed exotic supersymmetric structure with three different Z2-gradings can be useful for the search of hidden symmetries in some other quantum systems, in particular, related to the Lamé equation. © 2007 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Hidden nonlinear su(2|2) superunitary symmetry of N=2 superextended 1D Dirac delta potential problem
Título según SCOPUS: Hidden nonlinear su (2 | 2) superunitary symmetry of N = 2 superextended 1D Dirac delta potential problem
Título de la Revista: PHYSICS LETTERS B
Volumen: 659
Número: 3
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2008
Página de inicio: 746
Página final: 753
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0370269307014578
DOI:

10.1016/j.physletb.2007.11.046

Notas: ISI, SCOPUS