Norm formulae for the Bethe Ansatz on root systems of small rank

Bustamante, MD

Abstract

The norms of the Bethe Ansatz eigenfunctions for the Lieb-Liniger quantum system of n Bosonic particles on a ring with pairwise repulsive delta potential interactions are given by a beautiful determinantal formula, first conjectured by Gaudin in the early seventies and then proven by Korepin about a decade later. Recently, E Emsiz formulated a similar conjecture generalizing the Gaudin-Korepin norm formula in terms of the root systems of complex simple Lie algebras. Here we confirm the validity of the conjecture in question for small root systems up to rank 3 (thus including the important test case of the exceptional root system G2). © 2008 IOP Publishing Ltd.

Más información

Título según WOS: Norm formulae for the Bethe Ansatz on root systems of small rank
Título según SCOPUS: Norm formulae for the Bethe Ansatz on root systems of small rank
Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
Volumen: 41
Número: 2
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2008
Idioma: English
URL: http://stacks.iop.org/1751-8121/41/i=2/a=025202?key=crossref.f2704bc99fb4a5afa08c82c2e95a1f95
DOI:

10.1088/1751-8113/41/2/025202

Notas: ISI, SCOPUS