Conforming and nonconforming virtual element methods for fourth order nonlocal reaction diffusion equation
Abstract
In this work, we have designed conforming and nonconforming virtual element methods (VEM) to approximate non-stationary nonlocal biharmonic equation on general shaped domain. By employing Faedo-Galerkin technique, we have proved the existence and uniqueness of the continuous weak formulation. Upon applying Brouwer's fixed point theorem, the well-posedness of the fully discrete scheme is derived. Further, following [J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math. 386 (2021) 113229], we have introduced Enrichment operator and derived a priori error estimates for fully discrete schemes on polygonal domains, not necessarily convex. The proposed error estimates are justified with some benchmark examples.
Más información
Título según WOS: | Conforming and nonconforming virtual element methods for fourth order nonlocal reaction diffusion equation |
Título de la Revista: | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES |
Volumen: | 33 |
Número: | 10 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2023 |
Página de inicio: | 2035 |
Página final: | 2083 |
DOI: |
10.1142/S0218202523500483 |
Notas: | ISI |