Conforming and nonconforming virtual element methods for fourth order nonlocal reaction diffusion equation

Adak, Dibyendu; Anaya, Veronica; Bendahmane, Mostafa; Mora, David

Abstract

In this work, we have designed conforming and nonconforming virtual element methods (VEM) to approximate non-stationary nonlocal biharmonic equation on general shaped domain. By employing Faedo-Galerkin technique, we have proved the existence and uniqueness of the continuous weak formulation. Upon applying Brouwer's fixed point theorem, the well-posedness of the fully discrete scheme is derived. Further, following [J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math. 386 (2021) 113229], we have introduced Enrichment operator and derived a priori error estimates for fully discrete schemes on polygonal domains, not necessarily convex. The proposed error estimates are justified with some benchmark examples.

Más información

Título según WOS: Conforming and nonconforming virtual element methods for fourth order nonlocal reaction diffusion equation
Título de la Revista: MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
Volumen: 33
Número: 10
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2023
Página de inicio: 2035
Página final: 2083
DOI:

10.1142/S0218202523500483

Notas: ISI