Absence of point spectrum for unitary operators

bourget, O; Fernández, C.

Abstract

Let us consider the time-dependent Schrödinger equation,i φt = - Δ φ + V (x, t) φ, on the Hilbert space L2 (Rn), where V (x, t) is a repulsive periodic time-dependent potential, with period T. We denote by (U (t, s))(t, s) ∈ R × R its associated propagator. First, using a multiplier method, we rule out the existence of regular eigenvectors of the Floquet operator U (T, 0). Secondly, strengthening the hypotheses on the potential V, we prove that the spectrum of U (T, 0) does not contain any eigenvalues, by means of positive commutator methods. © 2007 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Absence of point spectrum for unitary operators
Título según SCOPUS: Absence of point spectrum for unitary operators
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 244
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2008
Página de inicio: 229
Página final: 241
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039607003294
DOI:

10.1016/j.jde.2007.10.025

Notas: ISI, SCOPUS