Absence of point spectrum for unitary operators
Abstract
Let us consider the time-dependent Schrödinger equation,i φt = - Δ φ + V (x, t) φ, on the Hilbert space L2 (Rn), where V (x, t) is a repulsive periodic time-dependent potential, with period T. We denote by (U (t, s))(t, s) ∈ R × R its associated propagator. First, using a multiplier method, we rule out the existence of regular eigenvectors of the Floquet operator U (T, 0). Secondly, strengthening the hypotheses on the potential V, we prove that the spectrum of U (T, 0) does not contain any eigenvalues, by means of positive commutator methods. © 2007 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Absence of point spectrum for unitary operators |
Título según SCOPUS: | Absence of point spectrum for unitary operators |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 244 |
Número: | 2 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2008 |
Página de inicio: | 229 |
Página final: | 241 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039607003294 |
DOI: |
10.1016/j.jde.2007.10.025 |
Notas: | ISI, SCOPUS |