Bayesian image reconstruction based on Voronoi diagrams
Abstract
We present a Bayesian Voronoi image reconstruction (VIR) technique for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed-pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images, and χ 2 values are used to compare our reconstructions with fixedgrid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view. © 2008. The American Astronomical Society. All rights reserved.
Más información
| Título según WOS: | Bayesian image reconstruction based on Voronoi diagrams |
| Título según SCOPUS: | Bayesian image reconstruction based on voronoi diagrams |
| Título de la Revista: | ASTROPHYSICAL JOURNAL |
| Volumen: | 672 |
| Número: | 2 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 2008 |
| Página de inicio: | 1272 |
| Página final: | 1285 |
| Idioma: | English |
| URL: | http://stacks.iop.org/0004-637X/672/i=2/a=1272 |
| DOI: |
10.1086/523961 |
| Notas: | ISI, SCOPUS |