Bayesian image reconstruction based on Voronoi diagrams

Cabrera, GF; Casassus, S.; Hitschfeld, N

Abstract

We present a Bayesian Voronoi image reconstruction (VIR) technique for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed-pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images, and χ 2 values are used to compare our reconstructions with fixedgrid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view. © 2008. The American Astronomical Society. All rights reserved.

Más información

Título según WOS: Bayesian image reconstruction based on Voronoi diagrams
Título según SCOPUS: Bayesian image reconstruction based on voronoi diagrams
Título de la Revista: ASTROPHYSICAL JOURNAL
Volumen: 672
Número: 2
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2008
Página de inicio: 1272
Página final: 1285
Idioma: English
URL: http://stacks.iop.org/0004-637X/672/i=2/a=1272
DOI:

10.1086/523961

Notas: ISI, SCOPUS