Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
Abstract
We consider physics-informed neural networks (PINNs) (Raissiet al., 2019) for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter optimization (HPO) procedure via Gaussian processes-based Bayesian optimization. We apply the HPO to Helmholtz equation for bounded domains and conduct a thorough study, focusing on: (i) performance, (ii) the collocation points density r and (iii) the frequency kappa, confirming the applicability and necessity of the method. Numerical experiments are performed in two and three dimensions, including comparison to finite element methods.
Más información
| Título según WOS: | Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems | 
| Título según SCOPUS: | ID SCOPUS_ID:85173236600 Not found in local SCOPUS DB | 
| Título de la Revista: | NEUROCOMPUTING | 
| Volumen: | 561 | 
| Editorial: | Elsevier | 
| Fecha de publicación: | 2023 | 
| DOI: | 
 10.1016/J.NEUCOM.2023.126826  | 
| Notas: | ISI, SCOPUS |