Bi-parametric operator preconditioning
Abstract
We extend the operator preconditioning framework Hiptmair (2006) [10] to Petrov-Galerkin methods while accounting for parameter-dependent perturbations of both variational forms and their preconditioners, as occurs when performing numerical approximations. By considering different perturbation parameters for the original form and its preconditioner, our bi-parametric abstract setting leads to robust and controlled schemes. For Hilbert spaces, we derive exhaustive linear and super-linear convergence estimates for iterative solvers, such as h-independent convergence bounds, when preconditioning with low-accuracy or, equivalently, with highly compressed approximations.
Más información
| Título según WOS: | Bi-parametric operator preconditioning | 
| Título según SCOPUS: | ID SCOPUS_ID:85117722185 Not found in local SCOPUS DB | 
| Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS | 
| Volumen: | 102 | 
| Editorial: | PERGAMON-ELSEVIER SCIENCE LTD | 
| Fecha de publicación: | 2021 | 
| Página de inicio: | 220 | 
| Página final: | 232 | 
| DOI: | 
 10.1016/J.CAMWA.2021.10.012  | 
| Notas: | ISI, SCOPUS |