How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems
Abstract
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions. © 2007 Springer-Verlag.
Más información
| Título según WOS: | How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems |
| Título según SCOPUS: | How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
| Título de la Revista: | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS |
| Volumen: | 187 |
| Número: | 1 |
| Editorial: | Springer |
| Fecha de publicación: | 2008 |
| Página de inicio: | 137 |
| Página final: | 156 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00205-007-0062-8 |
| DOI: |
10.1007/s00205-007-0062-8 |
| Notas: | ISI, SCOPUS |