Carleman inequalities and inverse problems for the Schrodinger equation
Abstract
In this Note, we derive new Carleman inequalities for the evolution Schrödinger equation under a weak pseudoconvexity condition, which allows us to use weights with a linear spatial dependence. As a result, less restrictive boundary or internal observation regions may be used to obtain the stability for the inverse problem consisting in retrieving a stationary potential in the Schrödinger equation from a single boundary or internal measurement, respectively. To cite this article: A. Mercado et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2007 Académie des sciences.
Más información
Título según WOS: | Carleman inequalities and inverse problems for the Schrodinger equation |
Título según SCOPUS: | Carleman inequalities and inverse problems for the Schrödinger equation |
Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
Volumen: | 346 |
Número: | 01-feb |
Editorial: | ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
Fecha de publicación: | 2008 |
Página de inicio: | 53 |
Página final: | 58 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S1631073X07005018 |
DOI: |
10.1016/j.crma.2007.11.014 |
Notas: | ISI, SCOPUS |