Association between Fractional Oxygen Extraction from Resting Quadriceps Muscle and Body Composition in Healthy Men

Yanez-Sepulveda, Rodrigo; Olivares-Arancibia, Jorge; Cortes, Guillermo; Vasquez-Bonilla, Aldo; Monsalves-Alvarez, Matias; Alvear-Ordenes, Ildefonso; Tuesta, M.

Abstract

This study aimed to associate body composition with fractional oxygen extraction at rest in healthy adult men. Fourteen healthy adults (26.93 ± 2.49 years) from Chile participated. Body composition was assessed with octopole bioimpedance, and resting muscle oxygenation was evaluated in the vastus lateralis quadriceps with near-infrared spectroscopy (NIRS) during a vascular occlusion test, analyzing the muscleVO2, resaturation velocity during reactive hyperemia via the muscle saturation index (%TSI), and the area above the curve of HHb (AACrep). It was observed that the total and segmented fat mass are associated with lower reoxygenation velocities during hyperemia (p = 0.008; β = 0.678: p = 0.002; β = 0.751), and that the total and segmented skeletal muscle mass are associated with higher reoxygenation velocities during hyperemia (p = 0.020; β = −0.614: p = 0.027; β = −0.587). It was also observed that the total and segmented fat mass were associated with a higher area above the curve of HHb (AACrep) during hyperemia (p = 0.007; β = 0.692: p = 0.037; β = 0.564), and that total and segmented skeletal muscle mass was associated with a lower area above the curve of HHb (AACrep) during hyperemia (p = 0.007; β = −0.703: p = 0.017; β = −0.632). We concluded that fat mass is associated with lower resaturation rates and lower resting fractional O2 extraction levels. In contrast, skeletal muscle mass is associated with higher resaturation rates and fractional O2 extraction during reactive hyperemia. The AACrep may be relevant in the evaluation of vascular adaptations to exercise and metabolic health.

Más información

Título según WOS: ID WOS:001130880600001 Not found in local WOS DB
Título según SCOPUS: ID SCOPUS_ID:85180498926 Not found in local SCOPUS DB
Volumen: 8
Fecha de publicación: 2023
DOI:

10.3390/JFMK8040149

Notas: ISI, SCOPUS