Local null controllability of a two-dimensional fluid-structure interaction problem
Abstract
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given 0$]], the system can be driven at rest and the structure to its reference configuration at time . To show this result, we first consider a linearized system. Thanks to an observability inequality obtained from a Carleman inequality, we prove an optimal controllability result with a regular control. Next, with the help of Kakutani's fixed point theorem and a regularity result, we pass to the nonlinear problem. © EDP Sciences.
Más información
Título según WOS: | Local null controllability of a two-dimensional fluid-structure interaction problem |
Título según SCOPUS: | Local null controllability of a two-dimensional fluid-structure interaction problem |
Título de la Revista: | ESAIM: Control, Optimisation and Calculus of Variations |
Volumen: | 14 |
Número: | 1 |
Editorial: | EDP SCIENCES S A |
Fecha de publicación: | 2008 |
Página de inicio: | 1 |
Página final: | 42 |
Idioma: | English |
URL: | http://www.esaim-cocv.org/10.1051/cocv:2007031 |
DOI: |
10.1051/cocv:2007031 |
Notas: | ISI, SCOPUS |