Interpretable Deep Learning Models for Time Series Forecasting
Más información
| Fecha de publicación: | 2023 |
| Objetivos: | The objective of this proposal is to design and implement deep learning models with multi-scale attention algorithms in three scenarios: i) point forecasting, ii) probabilistic forecasting, iii) continual learning and apply them to time series. |
| Instrumento: | FONDECYT |
| Año de Inicio/Término: | 2023-2026 |
| Financiamiento/Sponsor: | CONICYT |
| Rol del Usuario: | DIRECTOR(A) |
| DOI: |
11230351 |