On the Hardness of Gray Code Problems for Combinatorial Objects

Merino, Arturo; Namrata; Williams, Aaron; Uehara, R; Yamanaka, K; Yen, HC

Abstract

Can a list of binary strings be ordered so that consecutive strings differ in a single bit? Can a list of permutations be ordered so that consecutive permutations differ by a swap? Can a list of non-crossing set partitions be ordered so that consecutive partitions differ by refinement? These are examples of Gray coding problems: Can a list of combinatorial objects (of a particular type and size) be ordered so that consecutive objects differ by a flip (of a particular type)? For example, 000, 001, 010, 100 is a no instance of the first question, while 1234, 1324, 1243 is a yes instance of the second question due to the order 12 (43) over bar, 1 (23) over bar4, 1324. We prove that a variety of Gray coding problems are NP-complete using a new tool we call a Gray code reduction.

Más información

Título según WOS: ID WOS:001207267500009 Not found in local WOS DB
Título de la Revista: BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II
Volumen: 14549
Editorial: SPRINGER INTERNATIONAL PUBLISHING AG
Fecha de publicación: 2024
Página de inicio: 103
Página final: 117
DOI:

10.1007/978-981-97-0566-5_9

Notas: ISI