On new universal realizability criteria
Keywords: nonnegative matrix, diagonalizable realizability, universal realizability, Jordan structuree
Abstract
A list ? = { ? 1, ? 2, ..., ? n } of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix and is said to be universally realizable (UR), if it is realizable for each possible Jordan canonical form allowed by ?. In 1981, Minc proved that if ? is diagonalizably positively realizable, then ? is UR [Proc. Amer. Math. Society 83 (1981), 665-669]. The question whether this result holds for nonnegative realizations was open for almost 40 years. Recently, two extensions of Mins's result have been obtained by Soto et al. [Spec. Matrices 6 (2018), 301-309], [Linear Algebra Appl. 587 (2020), 302-313]. In this work, we exploit these extensions to generate new universal realizability criteria. Moreover, we also prove that under certain conditions, the union of two lists UR is also UR, and for certain criteria, if ? is UR, then for t ? 0, ? t = { ? 1 + t, ? 2 ± t, ? 3, ?, ? n } is also UR. © 2023 the author(s), published by De Gruyter.
Más información
| Título según WOS: | On new universal realizability criteria |
| Título según SCOPUS: | On new universal realizability criteria |
| Título de la Revista: | Special Matrices |
| Volumen: | 11 |
| Número: | 1 |
| Editorial: | DE GRUYTER OPEN LTD |
| Fecha de publicación: | 2023 |
| Idioma: | English |
| Financiamiento/Sponsor: | Universidad Católica del Norte |
| DOI: |
10.1515/spma-2022-0177 |
| Notas: | ISI, SCOPUS - ISI |