Extension of Brauer and Rado perturbation theorems for regular matrix pencils

Gonzalez-Pizarro, Javier; Salas, Mario; SOTO-MONTERO, RICARDO LORENZO

Keywords: matrrix pencils, generalized eigenvalue problem, eigenvalue chang, inverse probleme

Abstract

In this paper, we propose new results for changing eigenvalues of a regular matrix pencil A - & lambda; B, which are based on the well-known Brauer's theorem [A Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91, 1952] and Rado's theorem [B N Parlett, Symmetric matrix pencils, J. Comput. Appl. Math., 38, 373-385, 1991.]. These results allow us to change eigenvalues of the original matrix pencil without altering its regularity and in a quite simple way, even allowing to change infinite eigenvalues. We also present an extension of Rado's theorem that allows changing eigenvalues of a regular symmetric matrix pencil without altering its symmetric structure, and we show how to use these results in order to change the eigenvalues of a quadratic polynomial matrix. Finally, we present numerical examples that confirm the expected results with the new extensions of these theorems.

Más información

Título según WOS: Extension of Brauer and Rado perturbation theorems for regular matrix pencils
Título según SCOPUS: ID SCOPUS_ID:85163830360 Not found in local SCOPUS DB
Título de la Revista: PHYSICA SCRIPTA
Volumen: 98
Número: 1
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2023
Idioma: Inglés
Financiamiento/Sponsor: Universidad Católica del Norte
DOI:

10.1088/1402-4896/ACDF28

Notas: ISI, SCOPUS - WoS