Effects of topography and basins on seismic wave amplification: the Northern Chile coastal cliff and intramountainous basins
Abstract
During earthquakes, structural damage is often related to soil conditions. Following the 01 April 2014 Mw 8.1 Iquique earthquake in Northern Chile, damage to infrastructure was reported in the cities of Iquique and Alto Hospicio. In this study, we investigate the causes of site amplification in the region by numerically analyzing the effects of topography and basins on observed waveforms in the frequency range 0.1–3.5 Hz using the spectral element method. We show that topography produces changes in the amplitude of the seismic waves (amplification factors up to 2.2 in the frequency range 0.1–3.5 Hz) recorded by stations located in steep areas such as the ca. 1 km-high coastal scarp, a remarkable geomorphological feature that runs north–south, that is, parallel to the coast and the trench. The modeling also shows that secondary waves—probably related to reflections from the coastal scarp—propagate inland and offshore, augmenting the duration of the ground motion and the energy of the waveforms by up to a factor of three. Additionally, we find that, as expected, basins have a considerable effect on ground motion amplification at stations located within basins and in the surrounding areas. This can be attributed to the generation of multiple reflected waves in the basins, which increase both the amplitude and the duration of the ground motion, with an amplification factor of up to 3.9 for frequencies between 1.0 and 2.0 Hz. Comparisons between real and synthetic seismic waveforms accounting for the effects of topography and of basins show a good agreement in the frequency range between 0.1 and 0.5 Hz. However, for higher frequencies, the fit progressively deteriorates, especially for stations located in or near to areas of steep topography, basin areas, or sites with superficial soft sediments. The poor data misfit at high frequencies is most likely due to the effects of shallow, small-scale 3D velocity heterogeneity, which is not yet resolved in seismic images of our study region.
Más información
Título de la Revista: | GEOPHYSICAL JOURNAL INTERNATIONAL |
Volumen: | 227 |
Editorial: | OXFORD UNIV PRESS |
Fecha de publicación: | 2021 |
DOI: |
10.1093/gji/ggab259 |