Adaptive random quantum eigensolver

Barraza, N.; Pan, C-Y; Lamata, L.; Solano, E.; Albarran-Arriagada, F.

Abstract

We propose an adaptive random quantum algorithm to obtain an optimized eigensolver. Specifically, we introduce a general method to parametrize and optimize the probability density function of a random number generator, which is the core of stochastic algorithms. We follow a bioinspired evolutionary mutation method to introduce changes in the involved matrices. Our optimization is based on two figures of merit: learning speed and learning accuracy. This method provides high fidelities for the searched eigenvectors and faster convergence on the way to quantum advantage with current noisy intermediate-scaled quantum computers.

Más información

Título según WOS: Adaptive random quantum eigensolver
Título de la Revista: PHYSICAL REVIEW A
Volumen: 105
Número: 5
Editorial: AMER PHYSICAL SOC
Fecha de publicación: 2022
DOI:

10.1103/PhysRevA.105.052406

Notas: ISI