Adaptive random quantum eigensolver
Abstract
We propose an adaptive random quantum algorithm to obtain an optimized eigensolver. Specifically, we introduce a general method to parametrize and optimize the probability density function of a random number generator, which is the core of stochastic algorithms. We follow a bioinspired evolutionary mutation method to introduce changes in the involved matrices. Our optimization is based on two figures of merit: learning speed and learning accuracy. This method provides high fidelities for the searched eigenvectors and faster convergence on the way to quantum advantage with current noisy intermediate-scaled quantum computers.
Más información
Título según WOS: | Adaptive random quantum eigensolver |
Título de la Revista: | PHYSICAL REVIEW A |
Volumen: | 105 |
Número: | 5 |
Editorial: | AMER PHYSICAL SOC |
Fecha de publicación: | 2022 |
DOI: |
10.1103/PhysRevA.105.052406 |
Notas: | ISI |