Quantum pattern recognition in photonic circuits

Wang, Rui; Hernani-Morales, Carlos; Martin-Guerrero, Jose D.; Solano, Enrique; Albarran-Arriagada, Francisco

Abstract

This paper proposes a machine learning method to characterize photonic states via a simple optical circuit and data processing of photon number distributions, such as photonic patterns. The input states consist of two coherent states used as references and a two-mode unknown state to be studied. We successfully trained supervised learning algorithms that can predict the degree of entanglement in the two-mode state as well as perform the full tomography of one photonic mode, obtaining satisfactory values in the considered regression metrics.

Más información

Título según WOS: ID WOS:000722736700001 Not found in local WOS DB
Título de la Revista: QUANTUM SCIENCE AND TECHNOLOGY
Volumen: 7
Número: 1
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2022
DOI:

10.1088/2058-9565/ac3460

Notas: ISI