Depth-Adjustable Magnetostructural Phase Transition in Fe60V40 Thin Films

Anwar, Md. Shadab; Cansever, Hamza; Boehm, Benny; Gallardo, Rodolfo A.; Huebner, Rene; Zhou, Shengqiang; Kentsch, Ulrich; Rauls, Simon; Eggert, Benedikt; Wende, Heiko; Potzger, Kay; Fassbender, Juergen; Lenz, Kilian; Lindner, Jurgen; Hellwig, Olav; et. al.

Abstract

Phase transitions occurring within spatially confined regions can be useful for generating nanoscale material property modulations. Here we describe a magneto-structural phase transition in a binary alloy, where a structural transition from short-range order (SRO) to body centered cubic (bcc) results in the formation of depth-adjustable ferromagnetic layers, which reveal application-relevant magnetic properties of high saturation magnetization (M-s) and low Gilbert damping (alpha). Here we use Fe60V40 binary alloy films which transform from initially M-s = 17 kA/m (SRO structure) to 747 kA/m (bcc structure) driven by atomic displacements caused by penetrating ions. Simulations show that an estimated similar to 1 displacement per atom triggers a structural transition, forming homogeneous ferromagnetic layers. The thickness of a ferromagnetic layer increases as a step-like function of the ion fluence. Microwave excitations of the ferromagnetic/non-ferromagnetic layered system reveals an alpha = 0.0027 +/- 0.0001. The combination of nanoscale spatial confinement, low alpha, and high M-s provides a pathway for the rapid patterning of magnetic and microwave device elements.

Más información

Título según WOS: Depth-Adjustable Magnetostructural Phase Transition in Fe60V40 Thin Films
Título de la Revista: ACS APPLIED ELECTRONIC MATERIALS
Volumen: 4
Número: 8
Editorial: AMER CHEMICAL SOC
Fecha de publicación: 2022
Página de inicio: 3860
Página final: 3869
DOI:

10.1021/acsaelm.2c00499

Notas: ISI