Bayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis
Abstract
We introduce a class of shape mixtures of skewed distributions and study some of its main properties. We discuss a Bayesian interpretation and some invariance results of the proposed class. We develop a Bayesian analysis of the skew-normal, skew-generalized-normal, skew-normal-t and skew-t-normal linear regression models under some special prior specifications for the model parameters. In particular, we show that the full posterior of the skew-normal regression model parameters is proper under an arbitrary proper prior for the shape parameter and noninformative prior for the other parameters. We implement a convenient hierarchical representation in order to obtain the corresponding posterior analysis. We illustrate our approach with an application to a real dataset on characteristics of Australian male athletes. © 2008 International Society for Bayesian Analysis.
Más información
Título según WOS: | Bayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis |
Título según SCOPUS: | Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis |
Título de la Revista: | BAYESIAN ANALYSIS |
Volumen: | 3 |
Número: | 3 |
Editorial: | INT SOC BAYESIAN ANALYSIS |
Fecha de publicación: | 2008 |
Página de inicio: | 513 |
Página final: | 539 |
Idioma: | English |
URL: | http://ba.stat.cmu.edu/journal/2008/vol03/issue03/arellano.pdf |
DOI: |
10.1214/08-BA320 |
Notas: | ISI, SCOPUS |