Bayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis

Arellano-Valle, RB; Castro, LM; Genton, MG; Gomez, HW

Abstract

We introduce a class of shape mixtures of skewed distributions and study some of its main properties. We discuss a Bayesian interpretation and some invariance results of the proposed class. We develop a Bayesian analysis of the skew-normal, skew-generalized-normal, skew-normal-t and skew-t-normal linear regression models under some special prior specifications for the model parameters. In particular, we show that the full posterior of the skew-normal regression model parameters is proper under an arbitrary proper prior for the shape parameter and noninformative prior for the other parameters. We implement a convenient hierarchical representation in order to obtain the corresponding posterior analysis. We illustrate our approach with an application to a real dataset on characteristics of Australian male athletes. © 2008 International Society for Bayesian Analysis.

Más información

Título según WOS: Bayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis
Título según SCOPUS: Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis
Título de la Revista: BAYESIAN ANALYSIS
Volumen: 3
Número: 3
Editorial: INT SOC BAYESIAN ANALYSIS
Fecha de publicación: 2008
Página de inicio: 513
Página final: 539
Idioma: English
URL: http://ba.stat.cmu.edu/journal/2008/vol03/issue03/arellano.pdf
DOI:

10.1214/08-BA320

Notas: ISI, SCOPUS