Semiprimality and nilpotency of nonassociative rings satisfying x(yz) = y(zx)
Abstract
In this article we study nonassociative rings satisfying the polynomial identity x(yz)=y(zx), which we call "cyclic rings." We prove that every semiprime cyclic ring is associative and commutative and that every cyclic right-nilring is solvable. Moreover, we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras. Copyright © Taylor & Francis Group, LLC.
Más información
Título según WOS: | Semiprimality and nilpotency of nonassociative rings satisfying x(yz) = y(zx) |
Título según SCOPUS: | Semiprimality and nilpotency of nonassociative rings satisfying x(yz)=y(zx) |
Título de la Revista: | COMMUNICATIONS IN ALGEBRA |
Volumen: | 36 |
Número: | 1 |
Editorial: | TAYLOR & FRANCIS INC |
Fecha de publicación: | 2008 |
Página de inicio: | 132 |
Página final: | 141 |
Idioma: | English |
URL: | http://www.tandfonline.com/doi/abs/10.1080/00927870701665248 |
DOI: |
10.1080/00927870701665248 |
Notas: | ISI, SCOPUS |