Semiprimality and nilpotency of nonassociative rings satisfying x(yz) = y(zx)

Behn A.; Correa, I.; Hentzel, IR

Abstract

In this article we study nonassociative rings satisfying the polynomial identity x(yz)=y(zx), which we call "cyclic rings." We prove that every semiprime cyclic ring is associative and commutative and that every cyclic right-nilring is solvable. Moreover, we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras. Copyright © Taylor & Francis Group, LLC.

Más información

Título según WOS: Semiprimality and nilpotency of nonassociative rings satisfying x(yz) = y(zx)
Título según SCOPUS: Semiprimality and nilpotency of nonassociative rings satisfying x(yz)=y(zx)
Título de la Revista: COMMUNICATIONS IN ALGEBRA
Volumen: 36
Número: 1
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2008
Página de inicio: 132
Página final: 141
Idioma: English
URL: http://www.tandfonline.com/doi/abs/10.1080/00927870701665248
DOI:

10.1080/00927870701665248

Notas: ISI, SCOPUS