ON THE UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EQUATION IN AN ANNULUS
Abstract
--- - We establish the uniqueness of positive radial solutions of - (Delta u + f(u) = 0, x is an element of A - u(x) = 0 x is an element of partial derivative A (P) - "where A := A(a,b) = {x is an element of R-n : a < vertical bar x vertical bar < bg, 0 < a < b <= infinity. We assume that the nonlinearity f is an element of C[0,infinity) boolean AND C-1(0,infinity) is such that f(0) = 0 and satisfies some convexity and growth conditions, and either f(s) > 0 for all s > 0, or has one zero at B > 0, is non positive and not identically 0 in (0,B) and it is positive in (B,infinity)."
Más información
| Título según WOS: | ON THE UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EQUATION IN AN ANNULUS |
| Título de la Revista: | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS |
| Volumen: | 20 |
| Número: | 4 |
| Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
| Fecha de publicación: | 2021 |
| Página de inicio: | 1479 |
| Página final: | 1496 |
| DOI: |
10.3934/cpaa.2021029 |
| Notas: | ISI |