Nonlinear Analysis of Cross Rolls of Electrically Conducting Fluid under an Applied Magnetic Field with Rotation
Abstract
The proposed planer layer dynamo physical model has real-world applications, especially in the Earth's liquid core. Thus, in this paper, an attempt is made to understand the finite amplitude convection when there exists a coupling between the Lorentz force and the Coriolis force. In particular, the effect of a horizontally applied magnetic field is studied on the Rayleigh-Benard convection (RBC) that contains the electrically conducting fluid and rotates about its vertical axis. Free-free boundary conditions are assumed on the geometry. Attention is focused on the nonlinear convective flow behavior during the occurrence of cross rolls which are perpendicular to the applied magnetic field and parallel to the rotation axis. The visualization of cross rolls is achieved using the Fourier analysis of perturbations up to the O(e(8)). The relationship of the Nusselt number (Nu) with respect to the Rayleigh number (R), the Ekman number (E), and the Elsasser number (?) is investigated. It is observed that E generates a strong damping effect on the flow velocity and on the heat transfer at high rotation rates. Using the heatline concept, it is observed that the temperature within the central regime is enhanced as the ? increases. The results show that either E decreases or ? increases, then the heat transfer rate increases.
Más información
Título según WOS: | Nonlinear Analysis of Cross Rolls of Electrically Conducting Fluid under an Applied Magnetic Field with Rotation |
Título de la Revista: | PROCESSES |
Volumen: | 11 |
Número: | 7 |
Editorial: | MDPI Open Access Publishing |
Fecha de publicación: | 2023 |
DOI: |
10.3390/pr11071945 |
Notas: | ISI |