A Ruelle-Perron-Frobenius theorem for expanding circle maps with an indifferent fixed point

Garibaldi, Eduardo; Inoquio-Renteria, Irene

Abstract

We establish an original result for the thermodynamic formalism in the context of expanding circle transformations with an indifferent fixed point. For an observable whose modulus of continuity is linked to the dynamics near such a fixed point, by identifying an appropriate linear space to evaluate the action of the transfer operator, we show that there is a strictly positive eigenfunction associated with the maximal eigenvalue given as the exponential of the topological pressure. Taking into account also the corresponding eigenmeasure, the invariant probability thus obtained is proved to be the unique Gibbs-equilibrium state of the system.

Más información

Título según WOS: A Ruelle-Perron-Frobenius theorem for expanding circle maps with an indifferent fixed point
Título según SCOPUS: ID SCOPUS_ID:85136825639 Not found in local SCOPUS DB
Título de la Revista: LETTERS IN MATHEMATICAL PHYSICS
Volumen: 112
Editorial: KLUWER ACADEMIC PUBL
Fecha de publicación: 2022
DOI:

10.1007/S11005-022-01573-8

Notas: ISI, SCOPUS