Self-supervised Bernoulli Autoencoders for Semi-supervised Hashing
Abstract
Semantic hashing is a technique to represent high-dimensional data using similarity-preserving binary codes for efficient indexing and search. Recently, variational autoencoders with Bernoulli latent representations achieved remarkable success in learning such codes in supervised and unsupervised scenarios, outperforming traditional methods thanks to their ability to handle the binary constraints architecturally.
Más información
Título según WOS: | Self-supervised Bernoulli Autoencoders for Semi-supervised Hashing |
Título según SCOPUS: | ID SCOPUS_ID:85124301890 Not found in local SCOPUS DB |
Título de la Revista: | Lecture Notes in Computer Science |
Volumen: | 12702 |
Editorial: | Springer, Cham |
Fecha de publicación: | 2021 |
Página de inicio: | 258 |
Página final: | 268 |
DOI: |
10.1007/978-3-030-93420-0_25 |
Notas: | ISI, SCOPUS |