Self-supervised Bernoulli Autoencoders for Semi-supervised Hashing

NANCULEF-ALEGRIA, JUAN RICARDO; Mena, Francisco; Macaluso, Antonio; Lodi, Stefano; Sartori, Claudio; Tavares, JMRS; Papa, JP; Hidalgo, MG

Abstract

Semantic hashing is a technique to represent high-dimensional data using similarity-preserving binary codes for efficient indexing and search. Recently, variational autoencoders with Bernoulli latent representations achieved remarkable success in learning such codes in supervised and unsupervised scenarios, outperforming traditional methods thanks to their ability to handle the binary constraints architecturally.

Más información

Título según WOS: Self-supervised Bernoulli Autoencoders for Semi-supervised Hashing
Título según SCOPUS: ID SCOPUS_ID:85124301890 Not found in local SCOPUS DB
Título de la Revista: Lecture Notes in Computer Science
Volumen: 12702
Editorial: Springer, Cham
Fecha de publicación: 2021
Página de inicio: 258
Página final: 268
DOI:

10.1007/978-3-030-93420-0_25

Notas: ISI, SCOPUS