Compact almost automorphic solutions to integral equations with infinite delay
Abstract
Given a ? L1 (R) and the generator A of an L1-integrable resolvent family of linear bounded operators defined on a Banach space X, we prove the existence of compact almost automorphic solutions of the semilinear integral equation u (t) = ?- 8 t a (t - s) [A u (s) + f (s, u (s))] d s for each f : R × X ? X compact almost automorphic in t, for each x ? X, and satisfying Lipschitz and Hölder type conditions. In the scalar linear case, we prove that a ? L1 (R) positive, nonincreasing and log-convex is sufficient to obtain the existence of compact almost automorphic solutions. © 2009 Elsevier Ltd. All rights reserved.
Más información
| Título según WOS: | Compact almost automorphic solutions to integral equations with infinite delay |
| Título según SCOPUS: | Compact almost automorphic solutions to integral equations with infinite delay |
| Título de la Revista: | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS |
| Volumen: | 71 |
| Número: | 12 |
| Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
| Fecha de publicación: | 2009 |
| Página de inicio: | 6029 |
| Página final: | 6037 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0362546X09006993 |
| DOI: |
10.1016/j.na.2009.05.042 |
| Notas: | ISI, SCOPUS |