Compact almost automorphic solutions to integral equations with infinite delay
Abstract
Given a ? L1 (R) and the generator A of an L1-integrable resolvent family of linear bounded operators defined on a Banach space X, we prove the existence of compact almost automorphic solutions of the semilinear integral equation u (t) = ?- 8 t a (t - s) [A u (s) + f (s, u (s))] d s for each f : R × X ? X compact almost automorphic in t, for each x ? X, and satisfying Lipschitz and Hölder type conditions. In the scalar linear case, we prove that a ? L1 (R) positive, nonincreasing and log-convex is sufficient to obtain the existence of compact almost automorphic solutions. © 2009 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Compact almost automorphic solutions to integral equations with infinite delay |
Título según SCOPUS: | Compact almost automorphic solutions to integral equations with infinite delay |
Título de la Revista: | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS |
Volumen: | 71 |
Número: | 12 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2009 |
Página de inicio: | 6029 |
Página final: | 6037 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0362546X09006993 |
DOI: |
10.1016/j.na.2009.05.042 |
Notas: | ISI, SCOPUS |