Fuzzy deconvolution of neuronal events in Functional Magnetic Resonance Imaging

VELOZ-BAEZA, ALEJANDRO ANDRES; El-Deredy, Wael; Weinstein, Alejandro; Osorio, Juan Zamora; Moraga, Claudio; Marinazzo, Daniele

Abstract

The variability in the shape of the Blood Oxygenation Level Dependent (BOLD) response, as measured in Functional Magnetic Resonance Imaging (fMRI), can introduce significant uncertainty and inaccuracies in estimating brain connectivity and detecting brain activity. To address this issue, this paper proposes a fuzzy method that offers enhanced robustness in dealing with the inherent uncertainty associated with the brain's response in fMRI data. The results obtained from simulated data demonstrate that the proposed fuzzy method is capable of effectively handling deviations of the Hemodynamic Response Function from its canonical shape, providing promising potential for improving the accuracy and reliability of fMRI analyses.

Más información

Título según SCOPUS: ID SCOPUS_ID:85183546640 Not found in local SCOPUS DB
Título de la Revista: Procedia Computer Science
Volumen: 225
Editorial: Elsevier B.V.
Fecha de publicación: 2023
Página de inicio: 3425
Página final: 3431
DOI:

10.1016/J.PROCS.2023.10.337

Notas: SCOPUS