ASYMPTOTIC EQUIVALENCE AND KOBAYASHI-TYPE ESTIMATES FOR NONAUTONOMOUS MONOTONE OPERATORS IN BANACH SPACES
Abstract
We provide a sharp generalization to the nonautonomous case of the well-known Kobayashi estimate for proximal iterates associated with maximal monotone operators. We then derive a bound for the distance between a continuous-in-time trajectory, namely the solution to the differential inclusion ? + A(t)x ? 0, and the corresponding proximal iterations. We also establish continuity properties with respect to time of the nonautonomous flow under simple assumptions by revealing their link with the function t ? A(t). Moreover, our sharper estimations allow us to derive equivalence results which are useful to compare the asymptotic behavior of the trajectories defined by different evolution systems. We do so by extending a classical result of Passty to the nonautonomous setting.
Más información
Título según WOS: | ASYMPTOTIC EQUIVALENCE AND KOBAYASHI-TYPE ESTIMATES FOR NONAUTONOMOUS MONOTONE OPERATORS IN BANACH SPACES |
Título según SCOPUS: | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces |
Título de la Revista: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS |
Volumen: | 25 |
Número: | 4 |
Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
Fecha de publicación: | 2009 |
Página de inicio: | 1109 |
Página final: | 1128 |
Idioma: | English |
URL: | http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4489 |
DOI: |
10.3934/dcds.2009.25.1109 |
Notas: | ISI, SCOPUS |