ASYMPTOTIC EQUIVALENCE AND KOBAYASHI-TYPE ESTIMATES FOR NONAUTONOMOUS MONOTONE OPERATORS IN BANACH SPACES

Alvarez, F.; Peypouquet, J

Abstract

We provide a sharp generalization to the nonautonomous case of the well-known Kobayashi estimate for proximal iterates associated with maximal monotone operators. We then derive a bound for the distance between a continuous-in-time trajectory, namely the solution to the differential inclusion ? + A(t)x ? 0, and the corresponding proximal iterations. We also establish continuity properties with respect to time of the nonautonomous flow under simple assumptions by revealing their link with the function t ? A(t). Moreover, our sharper estimations allow us to derive equivalence results which are useful to compare the asymptotic behavior of the trajectories defined by different evolution systems. We do so by extending a classical result of Passty to the nonautonomous setting.

Más información

Título según WOS: ASYMPTOTIC EQUIVALENCE AND KOBAYASHI-TYPE ESTIMATES FOR NONAUTONOMOUS MONOTONE OPERATORS IN BANACH SPACES
Título según SCOPUS: Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces
Título de la Revista: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Volumen: 25
Número: 4
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2009
Página de inicio: 1109
Página final: 1128
Idioma: English
URL: http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4489
DOI:

10.3934/dcds.2009.25.1109

Notas: ISI, SCOPUS