Algebra homomorphisms defined via convoluted semigroups and cosine functions

Keyantuo V.; Lizama C.; Miana, PJ

Abstract

Transform methods are used to establish algebra homomorphisms related to convoluted semigroups and convoluted cosine functions. Such families are now basic in the study of the abstract Cauchy problem. The framework they provide is flexible enough to encompass most of the concepts used up to now to treat Cauchy problems of the first- and second-order in general Banach spaces. Starting with the study of the classical Laplace convolution and a cosine convolution, along with associated dual transforms, natural algebra homomorphisms are introduced which capture the convoluted semigroup and cosine function properties. These correspond to extensions of the Cauchy functional equation for semigroups and the abstract d'Alembert equation for the case of cosine operator functions. The algebra homomorphisms obtained provide a way to prove Hille-Yosida type generation theorems for the operator families under consideration. © 2009 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Algebra homomorphisms defined via convoluted semigroups and cosine functions
Título según SCOPUS: Algebra homomorphisms defined via convoluted semigroups and cosine functions
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 257
Número: 11
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2009
Página de inicio: 3454
Página final: 3487
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022123609003280
DOI:

10.1016/j.jfa.2009.07.017

Notas: ISI, SCOPUS