Development of surfactant integrated polyaniline based electrode material towards supercapacitor application

Reddy, P. C. Himadri; Himadri, Himadri Reddy; Anbalagan, Amarnath Chellachamy; Chellachamy Anbalagan, Amarnath; Amalraj, John; Chandrasekaran, Saravanan; Ruz, Priyanka

Abstract

Tailoring electrode material is always important for fabricating high-performance energy storage devices. Polyaniline (PANI) is one of the most -explored electrode materials due to its electroactivity, redox property, easy and cost-effective synthesis and reasonable capacitance. Herein, PANI has been integrated with surfactants (cetyltrimethylammonium bromide, dioctyl sodium sulfosuccinate, sodium lauryl sulphate, Tween-80) via chemical oxidative polymerization pathway and utilized as the electrode material for supercapacitor. Chemical nature, crystallinity and morphology of surfactant integrated PANI samples were evaluated by FTIR, UV-Visible, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques while electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge -discharge (GCD) and electrochemical impedance spectroscopy studies. Among the different PANI samples, PANI integrated with cetyltrimethylammonium bromide (PMC) afforded 2.3 times higher capacitance (528 F/g) than PANI synthesized without surfactants (PM) (229 F/g). Due to the influence of CTAB, PMC displayed higher pore volume and lesser particle size as investigated by Brunauer-Emmett-Teller and dynamic light scattering analyses. Furthermore, PMC displayed two times higher electroactive surface area as compared to PM as investigated by cyclic voltammetry studies. It has been observed that the surfactant not only improved the processability of the polymer but also assisted in enhancing the capacitance of the electrode material significantly.

Más información

Título según WOS: ID WOS:001203748300001 Not found in local WOS DB
Título según SCOPUS: ID SCOPUS_ID:85186688176 Not found in local SCOPUS DB
Título de la Revista: COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
Volumen: 688
Fecha de publicación: 2024
DOI:

10.1016/J.COLSURFA.2024.133545

Notas: ISI, SCOPUS