Towards minimizing efforts for Morphing Attacks-Deep embeddings for morphing pair selection and improved Morphing Attack Detection

Kessler, Roman; Raja, Kiran; Tapia, Juan; Busch, Christoph

Abstract

Face Morphing Attacks pose a threat to the security of identity documents, especially with respect to a subsequent access control process, because they allow both involved individuals to use the same document. Several algorithms are currently being developed to detect Morphing Attacks, often requiring large data sets of morphed face images for training. In the present study, face embeddings are used for two different purposes: first, to pre-select images for the subsequent large-scale generation of Morphing Attacks, and second, to detect potential Morphing Attacks. Previous studies have demonstrated the power of embeddings in both use cases. However, we aim to build on these studies by adding the more powerful MagFace model to both use cases, and by performing comprehensive analyses of the role of embeddings in pre-selection and attack detection in terms of the vulnerability of face recognition systems and attack detection algorithms. In particular, we use recent developments to assess the attack potential, but also investigate the influence of morphing algorithms. For the first objective, an algorithm is developed that pairs individuals based on the similarity of their face embeddings. Different state-of-the-art face recognition systems are used to extract embeddings in order to pre-select the face images and different morphing algorithms are used to fuse the face images. The attack potential of the differently generated morphed face images will be quantified to compare the usability of the embeddings for automatically generating a large number of successful Morphing Attacks. For the second objective, we compare the performance of the embeddings of two state-of-the-art face recognition systems with respect to their ability to detect morphed face images. Our results demonstrate that ArcFace and MagFace provide valuable face embeddings for image pre-selection. Various open-source and commercial-off-the-shelf face recognition systems are vulnerable to the generated Morphing Attacks, and their vulnerability increases when image pre-selection is based on embeddings compared to random pairing. In particular, landmark-based closed-source morphing algorithms generate attacks that pose a high risk to any tested face recognition system. Remarkably, more accurate face recognition systems show a higher vulnerability to Morphing Attacks. Among the systems tested, commercial-off-the-shelf systems were the most vulnerable to Morphing Attacks. In addition, MagFace embeddings stand out as a robust alternative for detecting morphed face images compared to the previously used ArcFace embeddings. The results endorse the benefits of face embeddings for more effective image pre-selection for face morphing and for more accurate detection of morphed face images, as demonstrated by extensive analysis of various designed attacks. The MagFace model is a powerful alternative to the often-used ArcFace model in detecting attacks and can increase performance depending on the use case. It also highlights the usability of embeddings to generate large-scale morphed face databases for various purposes, such as training Morphing Attack Detection algorithms as a countermeasure against attacks.

Más información

Título según WOS: ID WOS:001237119600174 Not found in local WOS DB
Título de la Revista: PLOS ONE
Volumen: 19
Número: 5
Editorial: PUBLIC LIBRARY SCIENCE
Fecha de publicación: 2024
DOI:

10.1371/journal.pone.0304610

Notas: ISI