Disposable Voltammetric Immunosensor for D-Dimer Detection as Early Biomarker of Thromboembolic Disease and of COVID-19 Prognosis

Tortolini, Cristina; Gigli, Valeria; Angeloni, Antonio; Galantini, Luciano; Tasca, Federico; Antiochia, Riccarda

Abstract

In this work, we report on the development of a simple electrochemical immunosensor for the detection of D-dimer protein in human plasma samples. The immunosensor is built by a simple drop-casting procedure of chitosan nanoparticles (CSNPs) as biocompatible support, Protein A (PrA), to facilitate the proper orientation of the antibody sites to epitopes as a capture biomolecule, and the D-dimer antibody onto a carboxyl functionalized multi-walled carbon nanotubes screen printed electrode (MWCNTs-SPE). The CSNPs have been morphologically characterized by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) techniques. Successively, the electrochemical properties of the screen-printed working electrode after each modification step have been characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The resulting MWCNTs-CSNPs-PrA-D-dimer Ab immunosensor displays an optimal and promising platform for antibody immobilization and specific D-dimer detection. DPV has been used to investigate the antigen/antibody interaction at different D-dimer concentrations. The proposed voltammetric immunosensor allowed a linear range from 2 to 500 mu g L-1 with a LOD of 0.6 mu g L-1 and a sensitivity of 1.3 mu A L mu g(-1) cm(-2). Good stability and a fast response time (5 s) have been reported. Lastly, the performance of the voltammetric immunosensor has been tested in human plasma samples, showing satisfactory results, thus attesting to the promising feasibility of the proposed platform for detecting D-dimer in physiological samples.

Más información

Título según WOS: ID WOS:000917001000001 Not found in local WOS DB
Título según SCOPUS: ID SCOPUS_ID:85146759820 Not found in local SCOPUS DB
Título de la Revista: Biosensors
Volumen: 13
Fecha de publicación: 2023
DOI:

10.3390/BIOS13010043

Notas: ISI, SCOPUS