Almost automorphic solutions to integral equations on the line
Abstract
Given a?L1(R) and A the generator of an L1-integrable family of bounded and linear operators defined on a Banach space X, we prove the existence of almost automorphic solution to the semilinear integral equation u(t)=?-8 ta(t-s)[Au(s)+f(s,u(s))]ds for each f:R×X?X almost automorphic in t, uniformly in x?X, and satisfying diverse Lipschitz type conditions. In the scalar case, we prove that a?L1(R) positive, nonincreasing and log-convex is already sufficient. © Springer Science+Business Media, LLC 2009.
Más información
| Título según WOS: | Almost automorphic solutions to integral equations on the line |
| Título según SCOPUS: | Almost automorphic solutions to integral equations on the line |
| Título de la Revista: | SEMIGROUP FORUM |
| Volumen: | 79 |
| Número: | 3 |
| Editorial: | Springer |
| Fecha de publicación: | 2009 |
| Página de inicio: | 461 |
| Página final: | 472 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00233-009-9154-0 |
| DOI: |
10.1007/s00233-009-9154-0 |
| Notas: | ISI, SCOPUS |