Fluid-Assisted Aggregation and Assembly of Magnetite Microparticles in the Giant El Laco Iron Oxide Deposit, Central Andes

Ovalle, J. Tomais; Reich, Martin; Barra, Fernando; Simon, Adam C.; Godel, Belinda; Le Vaillant, Margaux; Palma, Gisella; Deditius, Artur P.; Heuser, Gert; Arancibia, Gloria; Morata, Diego

Abstract

The El Laco iron oxide mineral deposit in the CentralAndes ofChile has attracted significant attention because of its uniquelypreserved massive magnetite orebodies, which bear a remarkable similarityto volcanic products. To date, the outcropping highly vesicular andporous massive magnetite orebodies have received little attentionfrom a microtextural point of view, limiting our understanding aboutthe role of volcanogenic processes on iron mineralization. Here, wereport the chemical composition of vesicular magnetite at El Lacousing EPMA and LA-ICP-MS methods and provide detailed 2D and 3D imagingof the internal structure of these texturally complex magnetite oresby combining SEM observations, synchrotron radiation micro-X-ray fluorescencechemical mapping, and high-resolution X-ray computed microtomography.Our observations reveal the presence of abundant magnetite microsphereswith diameters ranging from & SIM;100 to & SIM;900 & mu;m, aswell as dendritic microstructures forming interconnected networksup to a few millimeters in size. Two-dimensional microtextural andgeochemical imaging of the microspheres show that these features areformed by multiple euhedral magnetite crystals growing in all directionsand occur immersed within a porous matrix conformed by smaller-sized(& SIM;2-20 & mu;m) and irregularly shaped magnetite microparticles.These types of morphologies have been reported in hydrothermal ventsassociated with hydrovolcanic processes and commonly described inhydrothermal synthesis experiments of magnetite microspheres, suggestingprecipitation from iron-rich fluids. A hydrothermal origin for themagnetite microparticles reported here is further supported by theirgeochemical signature, which shows a strong depletion in most minorand trace elements typical from magnetite precipitated from hydrothermalfluids in ore-forming environments. We propose that decompression,cooling, and boiling of fluids triggered massive iron supersaturation,resulting in the nucleation of magnetite microparticles or colloids,followed by self-assembly into larger and more complex microstructures.Our data from El Laco deposit agree with models invoking magmatic-hydrothermalfluids to explain the origin of the deposit and provide new insightson the potential role of iron colloids as agents of mineralizationin volcanic systems.

Más información

Título según WOS: ID WOS:001018209700001 Not found in local WOS DB
Título de la Revista: ACS EARTH AND SPACE CHEMISTRY
Volumen: 7
Número: 7
Editorial: AMER CHEMICAL SOC
Fecha de publicación: 2023
Página de inicio: 1378
Página final: 1387
DOI:

10.1021/acsearthspacechem.3c00036

Notas: ISI