DIRECTIONAL MEAN DIMENSION AND CONTINUUM-WISE EXPANSIVE Zk-ACTIONS

Donoso, Sebastian; Jin, Lei; Maass, Alejandro; Qiao, Yixiao

Abstract

We study directional mean dimension of Z(k)- actions (where k is a positive integer). On the one hand, we show that there is a Z(2)- action whose directional mean dimension (considered as a [0,+infinity- valued function on the torus) is not continuous. On the other hand, we prove that if a Z(k)- action is continuum-wise expansive, then the values of its (k- 1)-dimensional directional mean dimension are bounded. This is a generalization (with a view towards Meyerovitch and Tsukamoto's theorem on mean dimension and expansive multiparameter actions) of a classical result due to Man ' e: Any compact metrizable space admitting an expansive homeomorphism (with respect to a compatible metric) is finite-dimensional.

Más información

Título según WOS: DIRECTIONAL MEAN DIMENSION AND CONTINUUM-WISE EXPANSIVE Zk-ACTIONS
Título de la Revista: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 150
Número: 11
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2022
Página de inicio: 4841
Página final: 4853
DOI:

10.1090/proc/16027

Notas: ISI