DIRECTIONAL MEAN DIMENSION AND CONTINUUM-WISE EXPANSIVE Zk-ACTIONS
Abstract
We study directional mean dimension of Z(k)- actions (where k is a positive integer). On the one hand, we show that there is a Z(2)- action whose directional mean dimension (considered as a [0,+infinity- valued function on the torus) is not continuous. On the other hand, we prove that if a Z(k)- action is continuum-wise expansive, then the values of its (k- 1)-dimensional directional mean dimension are bounded. This is a generalization (with a view towards Meyerovitch and Tsukamoto's theorem on mean dimension and expansive multiparameter actions) of a classical result due to Man ' e: Any compact metrizable space admitting an expansive homeomorphism (with respect to a compatible metric) is finite-dimensional.
Más información
Título según WOS: | DIRECTIONAL MEAN DIMENSION AND CONTINUUM-WISE EXPANSIVE Zk-ACTIONS |
Título de la Revista: | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
Volumen: | 150 |
Número: | 11 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2022 |
Página de inicio: | 4841 |
Página final: | 4853 |
DOI: |
10.1090/proc/16027 |
Notas: | ISI |