The Boundary Element Method with Lagrangian Multipliers

Gatica, GN; Healey, M; Heuer, N

Abstract

On open surfaces, the energy space of hypersingular operators is a fractional order Sobolev space of order 1/2 with homogeneous Dirichlet boundary condition (along the boundary curve of the surface) in a weak sense. We introduce a boundary element Galerkin method where this boundary condition is incorporated via the use of a Lagrangian multiplier. We prove the quasi-optimal convergence of this method (it is slightly inferior to the standard conforming method) and underline the theory by a numerical experiment. The approach presented in this article is not meant to be a competitive alternative to the conforming method but rather the basis for nonconforming techniques like the mortar method, to be developed. © 2008 Wiley Periodicals, Inc.

Más información

Título según WOS: The Boundary Element Method with Lagrangian Multipliers
Título según SCOPUS: The boundary element method with lagrangian multipliers
Título de la Revista: NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
Volumen: 25
Número: 6
Editorial: WILEY-BLACKWELL
Fecha de publicación: 2009
Página de inicio: 1303
Página final: 1319
Idioma: English
URL: http://doi.wiley.com/10.1002/num.20401
DOI:

10.1002/num.20401

Notas: ISI, SCOPUS