The Boundary Element Method with Lagrangian Multipliers
Abstract
On open surfaces, the energy space of hypersingular operators is a fractional order Sobolev space of order 1/2 with homogeneous Dirichlet boundary condition (along the boundary curve of the surface) in a weak sense. We introduce a boundary element Galerkin method where this boundary condition is incorporated via the use of a Lagrangian multiplier. We prove the quasi-optimal convergence of this method (it is slightly inferior to the standard conforming method) and underline the theory by a numerical experiment. The approach presented in this article is not meant to be a competitive alternative to the conforming method but rather the basis for nonconforming techniques like the mortar method, to be developed. © 2008 Wiley Periodicals, Inc.
Más información
Título según WOS: | The Boundary Element Method with Lagrangian Multipliers |
Título según SCOPUS: | The boundary element method with lagrangian multipliers |
Título de la Revista: | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
Volumen: | 25 |
Número: | 6 |
Editorial: | WILEY-BLACKWELL |
Fecha de publicación: | 2009 |
Página de inicio: | 1303 |
Página final: | 1319 |
Idioma: | English |
URL: | http://doi.wiley.com/10.1002/num.20401 |
DOI: |
10.1002/num.20401 |
Notas: | ISI, SCOPUS |