An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
Abstract
This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.
Más información
Título según WOS: | An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification |
Título según SCOPUS: | ID SCOPUS_ID:85184963058 Not found in local SCOPUS DB |
Título de la Revista: | IFAC-PapersOnLine |
Volumen: | 56 |
Fecha de publicación: | 2023 |
Página de inicio: | 4204 |
Página final: | 4209 |
DOI: |
10.1016/J.IFACOL.2023.10.1771 |
Notas: | ISI, SCOPUS |